logo
g Text Version
Beauty & Self
Books & Music
Career
Computers
Education
Family
Food & Wine
Health & Fitness
Hobbies & Crafts
Home & Garden
Money
News & Politics
Relationships
Religion & Spirituality
Sports
Travel & Culture
TV & Movies

dailyclick
Bored? Games!
Nutrition
Postcards
Take a Quiz
Rate My Photo

new
European Travel
Action Movies
Bible Basics
Houseplants
Romance Movies
Creativity
Family Travel


dailyclick
All times in EST

Autism Spectrum Disorders: 4:00 PM

Full Schedule
g
g Astronomy Site

BellaOnline's Astronomy Editor

g

Einstein's Eclipse


The world war that would claim over fifteen million lives was tearing Europe apart in 1915. So scientists outside Germany didn't know that a distinguished physicist had presented a theory that would shake up the way we see the Universe. The physicist was Albert Einstein, but his face was unknown to the world, his name not yet a synonym for genius. How did a solar eclipse in 1919 change all that?

Willem de Sitter
The Netherlands was neutral, and scientists there stayed in touch with others on both sides of the conflict. Dutch physicist Willem de Sitter was engrossed in Einstein's relativity theories. He probed them with Einstein, and discussed them with colleagues. De Sitter also wrote to Arthur Eddington, the secretary of the Royal Astronomical Society in England. He sent Einstein's paper on general relativity and agreed to write a commentary for the society.

Arthur Eddington
Although Arthur Eddington was only in his early thirties, he was the Plumian Professor of Astronomy at Cambridge University, a chair once held by Isaac Newton. A noted astrophysicist who did pioneering work on the internal structure of stars, he was also an exceptional mathematician – just the right person to be trying to make sense of Einstein's demanding theory. However Eddington was also a Quaker, a member of a pacifist religious society. Since he wouldn't fight, it looked as if he might end up in prison or a labor camp instead of pursuing science.

Gravity: Newton and Einstein
Newton's physics describes the world of our own everyday experience. Einstein's theories consider the Universe in an entirely different way, a way that defies common sense. Most of the physicists of the time couldn't follow the mathematics, but that wasn't the only problem that they had with relativity. The worldview involved wasn't any easier for them than for most of us.

For Newton, space is where things happen, and time passes in the background. You can describe space using Euclid's geometry, e.g., a straight line is the shortest distance between two points. Gravity is a force of attraction between masses.

But for Einstein, space and time are united in four-dimensional space-time. Mass causes space-time to curve around it. The greater the mass, the greater the curvature. The curvature around an astronomical body is often known as a gravity well. The stronger the curvature, the deeper the well. and the harder it is to escape from it.

This diagram shows how the Moon and an apple move in Earth's gravity well. The fast-moving Moon orbits, and the apple lands on the ground. Here gravity isn't a force. Objects are following the geometry of space-time.

How could you test Einstein's theory?
Most of the theory of general relativity couldn't be tested early in the twentieth century. However Einstein said that even the path of light rays would be affected by the way space-time curved around a massive body. Since the Sun is a massive body, starlight passing near the Sun should be deflected.

Problem: when the Sun is out, we can't see the stars. But there's one exception. You can see both the Sun and stars during a total solar eclipse. This means that you could photograph the star positions when their light skirts the Sun, and when the Sun isn't in the way.

Although the idea is simple, its execution isn't. Measuring the angle of the starlight's deflection is difficult, and it was even harder a century ago. Einstein's theory predicts a deflection of 1.75 arc seconds. Making it even more fiddly is that Newton's theory also predicts a deflection, but only half of that of Einstein's. This means that the measurement needs to be good enough not only to see if there is a deflection, but if so, to distinguish between the two theories.

If you're wondering how small an angle of 1.75 arc seconds is, try to imagine slicing a pie into 3600 equal wedges. Each piece would represent an angle of one arc second.

Solar eclipse May 1919
Frank Dyson, England's Astronomer Royal, persuaded the British government that Eddington's internationally-noted scientific work should exempt him from conscription. One element of Dyson's submission was the contribution Eddington would make to planning for and observing a total eclipse on May 29, 1919, if the war had ended by then. Besides saving a brilliant scientist, Dyson must have realized that a successful observation could be something of a coup for British astronomy. The eclipse had great potential for good results, because it lasted a long time, and the Sun would be in front of a cluster of bright stars.

There were two expeditions. One went to Sobral in Brazil and the other, led by Eddington, went to Principe, an island off the west coast of Africa. Despite the inevitable problems of such an enterprise, they collected enough data for them to be confident that their results were consistent with Einstein's theory, and not with Newton's.

A celebrity
The paper, A Determination of the Deflection of Light by the Sun's Gravitational Field, was presented to a joint meeting of the Royal Society and the Royal Astronomical Society in London. It wasn't just a sensation amongst the scientists, it was also big news around the world. The headline from the November 10 New York Times proclaimed: Lights all askew in the heavens”. Albert Einstein became an international celebrity.

Follow Me on Pinterest
Add Einstein%27s+Eclipse to Twitter Add Einstein%27s+Eclipse to Facebook Add Einstein%27s+Eclipse to MySpace Add Einstein%27s+Eclipse to Del.icio.us Digg Einstein%27s+Eclipse Add Einstein%27s+Eclipse to Yahoo My Web Add Einstein%27s+Eclipse to Google Bookmarks Add Einstein%27s+Eclipse to Stumbleupon Add Einstein%27s+Eclipse to Reddit




Empire of the Stars - book review
Gravity - cosmic glue
Isaac Newton - His Life
RSS
Related Articles
Editor's Picks Articles
Top Ten Articles
Previous Features
Site Map


For FREE email updates, subscribe to the Astronomy Newsletter


Past Issues


print
Printer Friendly
bookmark
Bookmark
tell friend
Tell a Friend
forum
Forum
email
Email Editor


Content copyright © 2014 by Mona Evans. All rights reserved.
This content was written by Mona Evans. If you wish to use this content in any manner, you need written permission. Contact Mona Evans for details.

g


g features
Cosmic White Christmas

Natural History Museum London - Astronomy Tour

Rosetta's Story – Facts for Kids

Archives | Site Map

forum
Forum
email
Contact

Past Issues
memberscenter


vote
Poetry
Daily
Weekly
Monthly
Less than Monthly



BellaOnline on Facebook
g


| About BellaOnline | Privacy Policy | Advertising | Become an Editor |
Website copyright © 2014 Minerva WebWorks LLC. All rights reserved.


BellaOnline Editor